
Setup

Benchmark:

Down-and-out european call option pricing

Underlying process: GBM

Generated via for loop: good proxy for simulating more complex
processes (Stochastic or Local Vol, SLV)

50k paths, 500 time steps

System Setup:

CPU: AMD Ryzen 5 7600X

Cores: 6-Core/12-Thread

Memory: 32GB DDR5-4800

Freq: Up to 5.45GHz

Vector Extensions: AVX512

Kacper Urbanski AADC: Performance Analysis Report December 22, 2024 1 / 4



Framework Performance Comparison

Framework First Pass (s) Second Pass (s)

TensorFlow 55.5302 8.2559
PyTorch 7.3873 7.2214
JAX 6.8160 6.4025
AADC 0.1662 0.0995

Table: Execution times comparison (in seconds)

First Pass: RNG + evaluate + compilation.
Second Pass: RNG + evaluate on compiled graph

Testbench code is attached.

Kacper Urbanski AADC: Performance Analysis Report December 22, 2024 2 / 4



Conclusions:

AADC shows orders of magnitude gains in both compilation and
execution.

Why? Existing Python AAD frameworks are geared towards ML
applications.

ML workloads:

Relatively few nodes (e.g. YOLO v8 network: 53 layers)
Each node is big (parameter matrices).

Quant finance workloads:

Many nodes (e.g. typical HW1F SDF + short rate simulation: > 1000
nodes)
Each node is small (time steps in a process simulation loop).

Kacper Urbanski AADC: Performance Analysis Report December 22, 2024 3 / 4



AADC is specifically designed for quant finance workloads.

Framework can fully exploit AVX512 hardware capabilities.

It comes with support of well-known and loved NumPy ufuncs and
functions.

If needed we can record through a mixture of pure Python and
Python bindings for existing C++ libraries (proprietary or OSS, e.g.
QuantLib).

Kacper Urbanski AADC: Performance Analysis Report December 22, 2024 4 / 4


