An elegant approach to run existing CUDA analytics on both GPU and CPU, with
added benefit of AAD

Executive Summary

GPUs have long been seen as a silver bullet for financial organisations striving to achieve top
computational performance. In pursuit of the proclaimed 100-1000x GPU performance gains against
CPU, many have taken a costly choice to transition their analytics to CUDA.

In some cases this decision was made almost a decade ago. Since then CPU based systems
have made a leap in parallel compute capacity and are now comparable, sometimes exceeding GPU
systems when total cost of ownership is accounted for.

In this post we present a solution that allows organisations with existing CUDA projects to
assess performance loss(or gain) for transitioning from GPU to modern CPU systems. Using real-life
CUDA examples, we demonstrate how existing GPU-only code can be adopted to run on CPU or GPU
at the same time. This should allow companies to make fair assessments of performance provided
by both technologies.

Developing analytics for CPU usually requires less effort and allows for advanced techniques
such as Automatic Adjoint Differentiation (AAD). Companies have to make a difficult decision
accounting for all pros and cons of both technologies.

We also make available an open source equity pricing model benchmark implemented for
both CPU and GPU to facilitate practitioners to help extract top performance from both platforms
and estimate unbiased metrics.

Introduction

When GPU initially came to the market, Mike Giles, a renowned quantitative finance
influencer and major promoter of GPU for financial computations commented: “If there is a big
enough market, someone will develop the product”. After a decade or so of technological
development, the anticipated revolution for the quantitative finance world has not happened and
does not seem to be getting closer. When Mike Giles was asked “Will GPUs have an impact in
finance?” he replied, “I think IT groups are keen, but quants are concerned about the effort
involved... quants have enough to do without having to think about CUDA programming” [MG,
pp.22,37]. Moreover, using GPU comes with technical limitations, such as strict memory volume
constraints.

For many years, the crucial factor in favour of GPU was the ability to generate kernels that
can be safely processed in parallel. With proclaimed performance gains of 1000x, a CFO might be
persuaded to switch to GPU, despite the significant investment required to transition to CUDA and
subsequent higher software support costs.

However, according to the most trustworthy and impartial benchmark (STAC-A2), when
hardware manufacturers put maximum software development effort to extract top performance
from their offerings, CPU and GPU go neck-and-neck.

In the example below we provide an approximate comparison of performance and
operational costs of modern CPUs vs GPUs, using cloud costs as a proxy for owning such a set up. It
shows that the average cost of a CPU TFLOP is ~“<30% higher than GPU. Therefore, the maximum
theoretical saving for a CFO is about 30%, not 1000x!

MatLogica Copyright © 2022 info@matlogica.com



NVIDIA Intel® Xeon® Platinum

Feat

cature GPU V100 9282 Processor
Number of cores 5,120 56 x 2
Clock frequency 877 MHz 2.6 GHz
Operations per clock (float 1 30
precision)
FMA 2 2
TFLOPS (all of above multiplied) 8.98 18.64
Approx monthly cost (GCP) 1300% 3416%
Approx monthly cost, per TFLOP| 145% 183%

Other key considerations include the software redesign effort, and the increased support and
maintenance costs associated with CUDA, which are driven by the specialised nature of the code and
thus requiring specialised developers. In addition, GPU vendor-lock is likely to drive an incremental
cost increase as older generations of hardware become outdated.

The performance gained from transitioning from CPU to GPU can’t be fully explained by the change
of hardware. It also involves a costly and easy-to-dismiss change of mindset, due to the transition
from object-oriented languages to matrix-vector multiplication paradigm, that would yield
performance improvements despite chip architecture.

Many large banks made a long-term commitment to CUDA/GPU a few years ago. Some have
come to realise that this decision has in fact created a raft of new liabilities; including, high
maintenance costs, scarcity and thus difficulty to find and recruit new talent, hardware reaching end-
of-service and so becoming obsolete, as well as hitting the technical limits of GPU due to new
business needs. However, there is a way out of the vendor-lock imposed by this migration to
CUDA/NVIDIA.

Until now, , technology similar to CUDA, allowing and supporting safe multithreading was
unavailable on a CPU. In response, MatLogica has developed AADC. Unlike CUDA, AADC can use
existing C++ object-oriented code to generate optimised kernels for scalable execution on a CPU with
minimal effort from developers.

AADC is able to simply reuse existing CUDA analytics, implemented for GPU, and run it on
scalable CPUs instead. With minimal changes, existing CUDA code can be adapted for AADC and
executed using multi-threading and vectorization on a CPU to get top performance. Unlike GPU, CPU
has plenty of memory to solve large problems and support AAD!

ldea: Using AADC to generate scalable CPU kernels with EXISTING
CUDA analytics

CUDA mainly uses C++ syntax and adds some extensions relevant to parallel programming
and GPU management. The AADC approach is to record scalable CPU kernels by executing original

MatLogica Copyright © 2022 info@matlogica.com



user code for one data sample (for instance, one MonteCarlo path). By getting CUDA analytics to run
with AADC for one data sample on CPU, we can record the full valuation graph and therefore compile

scalable CPU kernels that support execution in a safe multithreaded environment, whilst also taking

advantage of AVX native CPU vector arithmetics.

More complex problems, such as American Monte Carlo pricing and xVA, can be handled with

a similar approach albeit with modest increases in the complexity of the code.

How: Going back to host

To run the existing CUDA code with AADC on the CPU we disable CUDA extensions to make
the code compatible with the standard C++ compiler and ready for AADC kernel compilation. For
demonstration purposes we are very explicit here. In real life projects this code can be wrapped for

simplified use.

New compilation unit for AADC on CPU may look like this :

#define double idouble
#define bool ibool

// Override CUDA extensions:

#define _ global
void _ syncthreads() {};

struct { int x
struct { int x
struct { int x

0; } threadIdx;
0; } blockIdx;
0; } blockDim;

n

#include "kernel.cu
// Revert back overrides:
#undef double

#undef bool

#undef _ global_

// Normal C++ code follows here

change native types to active AADC types
to take advantage of operator overloading

ignore _ global

provide simple stub implementation for CUDA specific
API. Other methods can also be implemented such as
CUDAMemGetInfo etc.

use the zero-th thread to record MC path 0

Original user CUDA kernel

After applying these fixes, kernel.cu should compile as normal C++.

We can now add the AADC kernel compilation and the execution driver as with any other C++

code. This normally consists of 2 steps:

1. Starting kernel compilation and execution analytics from kernel.cu. For this we need
to explicitly identify model inputs and outputs;

2. Use the compiled CPU kernel instead of the original function for subsequent Monte-
Carlo iterations and running simulation across multiple CPU cores and avx2/avx512

parallelization.

Example: Equity Derivative Pricing

We use the model for pricing a single-asset Equity Linked Security option developed for
CUDA/GPU to examine the changes required to enable execution on a CPU, using MatLogica’s AADC.

MatLogica Copyright © 2022

info@matlogica.com



Yy
J AN
LOGICA

The original code is taken from https://github.com/ymh1989/CUDA MC and is inspired
by https://www.quantstart.com/articles/Monte-Carlo-Simulations-In-CUDA-Barrier-Option-Pricing/

The source code can be built on Linux and Windows and is available
in “CUDA_Example/AADC_Enabled/one-asset ELS/code” and the user manual is available as
“Manual.pdf”. For the vanilla option pricer, no changes to "kernel.cu" are required. For path-
dependent ELS option, minimal changes were needed and GPU/CPU compatibility is maintained.

The source code can be obtained on request using MatLogica website.

What about performance?

Let’s compare the performance of pricing a one-asset Equity Linked Security option using
CUDA/GPU and the AADC-enabled version of CUDA code, on CPU. This is a path-dependent option
that requires 1080 timesteps and performs 100k Monte-Carlo simulations. Performance measures
only include process simulation and pricing logic (random number generation is excluded).

Machine Price (using google cloud as a Execution time*
proxy)

NVIDIA V100 1300 USD 10.2 ms

CPU, 30 threads + avx512 915 USD 13.5ms

*The results are preliminary and are being validated by the hardware vendors.

Based on these results, we get comparable performance between top-of-the-line GPU/CUDA
and AADC-adapted CUDA code on a CPU. The changes required for CUDA code are minimal. Apart
from integrating MatLogica AADC, no additional optimisations were performed.

This example is open source and anyone can run it themselves as well as recommend
improvements for both CPU and GPU. We will update this tablet as we receive feedback from
hardware manufacturers and developers.

Conclusion

CUDA is not a one-way street. With minimal changes, it is possible to run CUDA code on a
scalable 64bit CPU and take advantage of AAD as an additional benefit. We have shown that it is
reasonably simple to support existing CUDA projects for dual CPU and GPU builds. This allows
organisations to make informed decisions about hardware options and choose the best option
depending on business needs.

In this post, we used an example of an embarrassingly parallel pricing method. In MatLogica,
we have solutions for a wide range of more complex models typical to quantitative finance such as
Longstaff-Schwarz pricing of callable products, XVA, PDEs, etc.

MatLogica Copyright © 2022 info@matlogica.com



